SIMULTANEOUS AND CONVERSE APPROXIMATION THEOREMS IN WEIGHTED LEBESGUE SPACES

YUNUS E. YILDIRIR AND DANIALY M. ISRAFILOV

(Communicated by J. Marshall Ash)

Abstract. In this paper we deal with the simultaneous and converse approximation by trigonometric polynomials of the functions in the Lebesgue spaces with weights satisfying so called Muckenhoupt’s A_p condition.

1. Introduction and the main results

Let $T := [-\pi, \pi]$. A positive almost everywhere (a.e.), integrable function $w : T \to [0, \infty]$ is called as a weight function. With any given weight w we associate the w-weighted Lebesgue space $L^p_w(T)$ consisting of all measurable functions f on T such that

$$
\|f\|_{L^p_w(T)} = \|f w\|_{L^p(T)} < \infty.
$$

Let $1 < p < \infty$ and $1/p + 1/q = 1$. A weight function w belongs to the Muckenhoupt class $A_p(T)$ if

$$
\left(\frac{1}{|I|} \int_I w^p(x)dx \right)^{1/p} \left(\frac{1}{|I|} \int_I w^{-q}(x)dx \right)^{1/q} \leq c
$$

with a finite constant c independent of I, where I is any subinterval of T and $|I|$ denotes the length of I.

For formulation of the new results we will begin with some required informations. Let

$$
f(x) \sim \sum_{k=-\infty}^{\infty} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)
$$

and

$$
\tilde{f}(x) \sim \sum_{k=1}^{\infty} (a_k \sin kx - b_k \cos kx)
$$

Keywords and phrases: Best approximation, weighted Lebesgue space, mean modulus of smoothness, fractional derivative.