APPROXIMATION BY GENERALIZED FABER SERIES IN WEIGHTED BERGMAN SPACES ON INFINITE DOMAINS WITH A QUASICONFORMAL BOUNDARY

DANIYAL M. ISRAFILOV AND YUNUS E. YILDIRIR

ABSTRACT. Using an integral representation on infinite domains with a quasiconformal boundary the generalized Faber series for the functions in the weighted Bergman space $A^2(G, \omega)$ are defined and its approximation properties are investigated.

1. INTRODUCTION AND MAIN RESULTS

Let G be a simply connected domain in the complex plane \mathbb{C} and let ω be a weight function given on G. For functions f analytic in G we set

$$A^1(G) := \left\{ f : \int \int_G |f(z)| \, d\sigma_z < \infty \right\}$$

and

$$A^2(G, \omega) := \left\{ f : \int \int_G |f(z)|^2 \omega(z) \, d\sigma_z < \infty \right\},$$

where $d\sigma_z$ denotes the Lebesgue measure in the complex plane \mathbb{C}.

If $\omega = 1$, we denote $A^2(G) := A^2(G, 1)$. The space $A^2(G)$ is called the Bergman space on G. We refer to the spaces $A^2(G, \omega)$ as “weighted Bergman spaces”. It becomes a normed spaces if we define

$$\|f\|_{A^2(G, \omega)} := \left(\int \int_G |f(z)|^2 \omega(z) \, d\sigma_z \right)^{1/2}.$$

Now, let L be a finite quasiconformal curve in the complex plane \mathbb{C}. We recall that L is called a quasiconformal curve if there exists a quasiconformal homeomorphism of the complex plane onto itself that maps a circle onto L. We denote by G_1 and G_2 the bounded and unbounded components of $\mathbb{C} \setminus L$

2000 Mathematics Subject Classification. 30E10, 41A10, 41A25, 41A58.

Key words and phrases. Weighted Bergman spaces, quasiconformal curves, Faber series.