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Abstract - Stochastic operation times make job-shop scheduling harder at companies which work based on project type labor-

intensive production in a dynamic environment. The operation times are not known before production and change based on the orders’ 

technical specifications. In performing required operations with the aim of producing a final product, scheduling is required for 

different purposes such as minimizing makespan, maximizing resource utilization, etc. This is important as it enables companies to 

meet customer demands by due date and reduce the labor cost on the finalized product. In this study, an order scheduling algorithm is 

proposed for nearly optimizing average makespan for several waiting orders in a transformer company’s core production workshop 

considering dynamical production environment. The proposed algorithm adopts the technical order specifications, computes the 

stochastic operation times making use of simulation, and schedule orders using one of the widely used meta-heuristics, namely genetic 

algorithm. The objective is to determine the entry sequence of the waiting orders to the core production workshop for minimizing their 

average makespan which directly influences the resource utilization, efficiency, and labor costs. 
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1. Introduction 
Transformers are electro-mechanic devices used to transmit the electrical power to consumers from its source [1] and 

produced in a labor-intensive project type production system. Except a few similar transformers produced frequently; there 

are unlimited types of different transformer orders varying based on the technical specifications demanded by the 

customers for those to be produced for the first time. This variation causes considerable amount of differences in 

processing times, makespan and due date for each type of order which are unknown and must be predicted before starting 

the production [2-4]. For this purpose, an effective scheduling is required for minimizing the labor cost and due date. 

Because of the project-type labor intensive work, the state of the shop floor is changed continuously. Therefore, the 

dynamic shop conditions must be considered for better estimations and effective schedules to minimize costs. Offline 

deterministic scheduling is not an effective tool for this type of production. In deterministic scheduling, processing times 

for each job are known before starting the production and there are no system disturbances, except few production changes. 

This type of systems may be widely computer-controlled. Stochastic scheduling is more suitable for scheduling in dynamic 

shop floors. In stochastic scheduling, the required operations are known but not the processing times. These two types of 

scheduling strategies may be performed offline or online. In online scheduling, worker assignments to the tasks and 

allocation of the machines to the jobs are random and vary based on the order properties, status of the machines, machining 

capabilities, etc. [5]. 
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In the electro-mechanic industry, the manufacturing is performed by project type production. For this reason, the 

conventional scheduling approach that only considers the general job and shop characteristics (the number of 

number of jobs in the queue, etc.) are insufficient. In such a production system, each of the received transformer order 

be considered as a new product. The same transformers' designs with equal power and voltage numbers may be 

completely different because of their technical specifications demanded by the customer [3]. This makes considering 

technical specifications of the transformer design a vital factor in obtaining an effective schedule.  

The production operations of a transformer consist of four main steps, (i) magnetic core production, (ii) winding 

production, (iii) active part assembly, and (iv) final assembly [2]. This study is focused on order scheduling for the 

magnetic core production unit. Genetic algorithm (GA) is used for scheduling orders under comprehensive design 

constraints. Arena simulation is used to calculate processing times and makespan of operations based on order sequences 

generated by GA. The simulation model includes mathematical models and probability distributions – which use technical 

design parameters of orders as input variables – to calculate processing times. Although various GA approaches have been 

implemented for solving job-shop scheduling problem in the literature [6-11], the technical specifications of orders are 

considered in none of them. The following section gives a brief description of the proposed GA based scheduling approach 

and the simulation technique integrated into it. The case study and obtained results are presented in Section 3, followed by 

some concluding remarks presented in the Section 4.  

 

2. Proposed Method  
 

2.1. Scheduling 
GA is used in this research to find the best sequence of customer orders, which minimizes average makespan. 

Average makespan here corresponds to the completion of latest order divided by the total number of orders, 

customized based on customer demands. GA belongs to the family of evolutionary algorithms and is inspired by the 

natural selection principle. GAs have been originally developed by Holland [12] and been extensively used in 

combinatorial optimization problems (e.g., travelling salesman [13, 14], job-shop scheduling [15, 16], assembly line 

balancing [17, 18], lot-sizing [19, 20], etc.) where exact solution methods fail to investigate the optimal solution in a 

reasonable amount of time. Please refer to Goldberg [21] for a detailed discussion on the structure and components of 

GA.  

GAs are based on a population of individuals (called chromosome), each of which represents a complete solution. 

Each chromosome is composed of several genes, and the algorithm iterates by evolving the population via genetic 

operators, i.e. selection, crossover, and mutation. The representation of a solution (encoding) plays vital importance in 

the performance of the algorithm. Therefore, an appropriate encoding/decoding mechanism should be determined 

before applying those operators. In permutation encoding, every chromosome is a string of numbers and each number 

shows only once. Each gene (or digit) usually corresponds to a real value, e.g. job number, task number and city 

number. The fitness value of each chromosome is computed and those having better fitness values (in accordance with 

the objective – minimization or maximization) are favored to be reproduced and transferred to the next generation. 

After applying genetic operators for several iterations, the solution which has the best fitness value is reported as the 

final solution. 

 

2.2. Simulation 
Simulation is “a numerical technique for conducting experiments on a digital computer which involves logical 

and mathematical relationships that interact to describe the behavior of a system over time” [22]. Nowadays, 

computational power and storage capacity of contemporary computers and software are better than ever, and because 

of these improvements, simulation is often used in various fields and industries. There are many competing languages 

to conduct a simulation work in a computer. Some of these languages are specially created for simulation, and use 

drag and drop modules like Arena and Promodel. Arena is one of the most popular simulation software, and exploits 

ActiveX Automation and Visual Basic for Applications (VBA) for integrating directly with other programs. In this 

paper, Arena 14 simulation software is used for the simulation [3].  
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2.3. Progress of the Proposed Algorithm 
As Arena is fully compatible with Microsoft technologies, the proposed GA is coded in VBA environment which 

makes connection to Arena simulation software hassle-free. All GA specific components, including genetic operators and 

iterating the algorithm until the maximum number of iterations (MaxNbIt), are implemented in VBA. Arena is used for 

computing the fitness value (FV) of each chromosome via simulating the complex system. The system here corresponds to 

the dynamic labor-intensive project-type core production system including various operations, queues and capacity 

constraints of which the details will be provided in the next section.  

Figure 1 depicts the flowchart of the proposed GA-based optimization approach to minimize average makespan, 

namely, the total completion time of all customer orders. GA is used here for tuning the sequence of waiting customized 

orders for importing them to the system. The algorithm starts with randomly generating the initial population, which 

involves PopSize number of chromosomes. Each chromosome is made up of a permuted sequence of orders from 1 to the 

total number of orders, where each gene corresponds to an order number. Figure 2 presents a schematic view of a sample 

chromosome consisting of 14 orders. As seen from the figure, each order is shown only once on the chromosome. This is a 

sample complete solution for our problem. Orders are transferred to the production system in which they are shown on the 

chromosome, i.e. 4, 10, 8, 13, and so on.  

 
Fig. 1: The flowchart of the proposed approach. 

 

After generating the initial population, the fitness value of each chromosome is computed by running Arena for each 

of these chromosomes. For computing fitness value of a specific chromosome, the orders existing in the input file of Arena 

are sequenced based on their sequence on the chromosome and Arena is run. When Arena completes the simulation, FV 

(average makespan) is exported to an Excel file, read by the GA and integrated with the corresponding chromosome. Arena 

is run again every time the fitness value of a chromosome to be computed.  

 

4 10 8 13 9 1 2 5 11 6 7 12 3 14 

 

 
Fig. 2: The representation of a sample chromosome. 
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When the FVs of all chromosomes in the initial population are computed, roulette wheel selection (or fitness-

proportional selection) is applied to select chromosomes for crossover and mutation. Thus, reproductive trials are allocated 

to chromosomes in accordance with their fitness values. The probability P(i) of selecting the i-th individual is 

𝑃(𝑖) =
𝐹𝑉(𝑖)

∑ 𝐹𝑉(𝑘)
𝑃𝑜𝑝𝑆𝑖𝑧𝑒
𝑘=1

. In this method, the selection probability of an individual is proportional to its FV. The number of 

chromosomes to apply crossover is determined by the multiplication of PopSize and crossover rate (cr). For example, if 

PopSize = 20 and cr = 0.5, four chromosomes are selected for crossover, in binary pairs. A random number, between 1 and 

PopSize-1 is determined as the cutting point (cp) and one-point crossover is applied. Figure 3 shows the crossover operator 

(cp=5). As seen, the head of the first child is directly taken from Parent 1 and the tail is completed by adding missing 

genes based on their sequence in Parent 2. Similarly, Child 2 is generated from the head of Parent 2 and the sequence of 

missing genes in which they appear in Parent 1. 

 
Parent 1 5 7 3 1 9 12 11 2 4 6 14 13 10 8 

 
Parent 2 10 2 9 6 4 11 13 8 7 14 5 3 1 12 

 

 
Child 1 5 7 3 1 9 10 2 6 4 11 13 8 14 12 

 
Child 2 10 2 9 6 4 5 7 3 1 12 11 14 13 8 

Fig. 3: The crossover operator. 

 

Mutation operator is applied to selected chromosomes in two ways: swap and insert. The number of chromosomes to 

apply mutation is determined by the multiplication of PopSize and mutation rate (mr). For each selected chromosome, a 

random number (rnd) is determined between 0 and 1 and if rnd < 0.5, swap is applied; otherwise, insert is applied. This 

stochastic mechanism aims to increase the diversity in the population. Figure 4 shows the schematic representation of the 

mutation. As seen, swap is applied by swapping genes at two randomly determined points (sp1, and sp2). In this example, 

genes 1 and 4 are swapped (swapping points are determined as sp1=4 and sp2=11). In the insert method, two random 

points, ins1 and ins2 (ins1< ins2) are determined and the gene located at ins1 is moved to the location ins2. In the example 

given in Figure 4, insert points are determined as ins1=2 and ins2=9. After obtaining children, their FVs are computed and 

the once which have better FVs are included in the population replacing worse ones. This cycle continues until MaxNbIt is 

exceeded and the algorithm is terminated reporting the best solution investigated. 

 
Parent 12 13 6 1 7 8 11 2 14 10 4 9 3 5 

Swap 

Child  12 13 6 4 7 8 11 2 14 10 1 9 3 5 

 
Parent 2 5 13 12 14 11 3 1 4 9 10 6 7 8 

Insert 

Child 2 13 12 14 11 3 1 4 5 9 10 6 7 8 

Fig. 4: The mutation operator. 

 

3. Case Study 
 

3.1. Production System of BEST Transformers Company 
BEST Transformers is a transformer producer located in Balikesir, Turkey. This study is focused on order 

scheduling for the magnetic core production process of BEST transformers. The manufacturing line is designed as a 

labor-intensive project-type production, composed of sequential processes. A summarized production flowchart of the 

magnetic core production is given in Figure 5. In magnetic core production, cold-rolled grain-oriented silicon-steel is 

used. This steel has high conductivity and low power losses which is necessary for core production. Core material is 

sliced and cut into dimensions which are planned as per the needs of the specifications prepared by the engineering 
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department. After the cutting operation, all the lamination sheets are stacked in manual or semi-automatic machines [2, 3].  

 

 
Fig. 5: Summarized production flow chart for magnetic core production. 

 

In slicing operation, steel slice stocks are primarily checked and those not existing in the stock are sliced in slice 

cutting machine from the roll in width set design. In this study, it is assumed that the steel slice stocks are ready before 

starting the cutting operation and there is no tardiness resulted from this operation. In cutting operation, sliced rolls are cut 

in measurements determined in design phase. The processing time of cutting is affected from the weight of the core and the 

number of sheets - which are also determined in the design phase. Two cutting machines exist in the system. In the case 

that the number of transformers in an order is more than 1, cutting operation should be performed primarily in cutting 

machine 1 (MC1). Cutting process has capacity limitations for MC1 based on the maximum width of the sheet, as given in 

Table 1. For example, if the width of the sliced rolls is between 160 mm and 250 mm, then cutting machine can cut 5 

orders at the same time. Similarly, for the width ranges from 250 mm to 310 mm, up to 4 transformer orders can be cut at 

the same time. MC2 is preferred for orders including one transformer as it is able to cut sheets belonging to one 

transformer up to 540 mm, at a time.   

 
Table 1: Grouping constraint related to cutting machine 1 (MC1). 

 

Maximum width of the sheet, x (mm) 𝑥 ≤ 160 160 < 𝑥 ≤ 250 250 < 𝑥 ≤ 310 310 < 𝑥 ≤ 440 

Maximum number of orders to be cut at once 7 5 4 3 

 

Stacking is a labor-intensive operation. Sheets cut are manually stacked in stacking tools by workers. In this operation, 

the constraints are related to the power, core weight, precedence relationships, and labor. For example, orders which have 

power higher than 3000 kVA, are stacked in automatic tools primarily. However, automatic tools support transformers to a 

certain weight while this is not the case for manual tools. In addition, there are totally 10 workers in stacking operation; 

while there are no labor resource limitations in other processes. In stacking area, one worker is allocated to each stacking 

tool. In case that the core is heavier than 1000 kg, two workers are allocated to this operation. So, one stacking tool 

becomes unavailable due to the lack of operator (who is helping to his mate in another tool) for order allocation in such a 

case. If the weight of the transformer is between 0 and 2000 kg, it is operated at automatic stacking tools, DM1-DM4. 

Also, it is primarily allocated to automatic tools DM3-DM4, if the weight is between 2001 kg and 3000 kg. Manual tools 

are identical and there is no preference in between. 

 

3.2. Numerical data and results 
The data for a total of 14 orders have been gathered from the company’s current waiting orders list, as listed in Table 

2. These 14 orders correspond to the production of a total of 40 transformers. Two cutting machines exist in the system, 

MC1 and MC2. When there is more than one transformer in an order, the cutting operation constraints given in Section 3.1 

are considered in determining the machine type to use and lot size to cut. Four automatic stacking tools (DM1, DM2, DM3 

and DM4) and six manual stacking tools (FM1, FM2, FM3, FM4, FM5 and FM6) serve in the stacking area. Stacking 
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constraints given in Section 3.1 are considered in determining the machine type to use for stacking. The aim here is to 

minimize the average of makespan of orders listed in Table 2 using the proposed GA-based approach. 

 
Table 2: Technical specifications of orders. 

 

Order 

Number of 

transformer 

in order 

Max width 

(mm) 

Cutting 

machines 

Power 

(kVA) 

Total 

weight 

(kg) 

Stacking 

machines 

(priority) 

Stacking 

machines 

1 1 300 MC2, MC1 4000 2.142 DM3,DM4 
FM1,FM2,FM3, 

FM4,FM5,FM6 

2 1 230 MC2, MC1 3000 1.696 
DM1,DM2, 
DM3,DM4 

FM1,FM2,FM3, 
FM4,FM5,FM6 

3 1 300 MC2, MC1 4000 2.100 DM3,DM4 
FM1,FM2,FM3, 

FM4,FM5,FM6 

4 4 230 MC1 3000 1.765 
DM1,DM2, 
DM3,DM4 

FM1,FM2,FM3, 
FM4,FM5,FM6 

5 10 200 MC1 2000 1.457 
FM1,FM2,FM3, 

FM4,FM5,FM6 
- 

6 8 190 MC1 2000 1.286 
FM1,FM2,FM3, 
FM4, FM5,FM6 

- 

7 4 280 MC1 3400 1.704 
DM1,DM2, 

DM3,DM4 

FM1,FM2,FM3, 

FM4,FM5,FM6 

8 2 130 MC1 150 133 
FM1,FM2,FM3, 
FM4,FM5, FM6 

- 

9 2 210 MC1 3000 1.621 
FM1,FM2,FM3, 

FM4,FM5,FM6 
- 

10 1 180 MC1 1600 1.099 
FM1,FM2,FM3, 
FM4,FM5,FM6 

- 

11 1 170 MC1 1250 929 
FM1,FM2,FM3, 

FM4,FM5,FM6 
- 

12 2 210 MC1 3000 1.621 
FM1,FM2,FM3, 
FM4,FM5,FM6 

- 

13 1 170 MC1 160 412 
FM1,FM2,FM3, 

FM4,FM5,FM6 
- 

14 2 200 MC1 2500 1.420 
FM1,FM2,FM3, 
FM4,FM5,FM6 

- 

 

To see the difference that the proposed methodology makes in the average makespan, the company’s current order 

sequence, 1-2-3-4-5-6-7-8-9-10-11-12-13-14, is simulated using Arena when the replication number is set to 30. The 

average makespan is found about 225 hours. Later, the GA is run with parameters PopSize = 25, MaxNbIt = 40, cr = 0.5, 

and mr = 0.1. A total of 625 chromosomes have been generated during the algorithm run and the chromosomes of which 

the completion time exceeds the delivery time to the next process are eliminated from the population. Figure 6 shows the 

average makespan of chromosomes generated during the iterations. The individual which gives the best FV (≅187 hours) 

is 3-9-14-11-4-13-10-12-1-2-6-8-7-5. As seen from the figure, the average makespan is reduced from 225 to 187 hours, 

with a 16.8% reduction. 
 

 
Fig. 6: The change in FVs of chromosomes generated. 
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4. Conclusions 
This study focused on determining the best possible processing sequence of the orders to minimize the average 

makespan under the dynamic job-shop conditions. For this purpose, Arena simulation is used for modeling the dynamic 

conditions of the labor-intensive project type manufacturing environment of BEST Transformers and GA is used for 

determining the optimal sequence of customized orders waiting for processing. Mathematical models and probability 

distributions are used in Arena simulation for the calculation of stochastic times. This study makes significant 

contributions to knowledge. First, existing researches in the literature have not directly considered the technical design 

specifications of the orders in scheduling. Because of project-type manufacturing environment, the majority of the 

transformers are produced only once and the processing times for these orders are unknown. Previous studies on this 

subject considered general job and shop characteristics (such as the number of resources, labors, jobs in queue, etc.) and 

the processing times are thought to be known before starting the production. However, in this study, in addition to the job-

shop characteristics of the production environment, the technical specifications (such as power, weight, number of slices, 

etc.) of the orders demanded by the customers are directly considered in scheduling orders. Also, GA and simulation are 

integrated to obtain a feasible as well as powerful solution in sequencing customer orders. The result of the case study 

made it clear that the average makespan is reduced thanks to the proposed methodology. Using the proposed methodology 

in similar project-type production systems may provide significant advantages.  
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