
International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 249

Multi-objective Optimization of

Mixed-model Two-sided Assembly Lines

– A Case Study

Ibrahim Kucukkoc

Department of Industrial Engineering, Faculty of Engineering, Balikesir University, Balikesir, Turkey
ikucukkoc@balikesir.edu.tr

Abstract — Assembly lines are one of the frequently used

mass production techniques for producing homogeneous

parts in large quantities. An assembly line is called a mixed-

model line when there is more than one product model being

assembled on the same line. This paper addresses to mixed-

model two-sided lines, on which two or more large-sized

product models (like buses or trucks) are assembled on the

same line in an intermixed sequence. An ant colony

optimization algorithm is proposed for minimizing the cycle

time of the line as well as the number of workstations. A real-

world problem is solved using the proposed approach and

the efficiency of the line is improved.

Keywords — assembly line balancing; mixed-model lines;

two-sided lines; multi-objective optimization; ant colony

optimization.

I. INTRODUCTION

An assembly line is composed of a sequence of

workstations linked to each other through a conveyor or a

moving belt. In each workstation (a physical space in

which at least one operator works), a set of tasks are

performed regarding the semi-product assembled on the

line and the semi-product is forwarded to the subsequent

workstation. The final product is departed from the last

workstation and the time between the departures of two

consecutive products is called cycle time. Thus, each

workstation is allowed to perform all tasks assigned to it

within the cycle time [1].

The assembly line balancing problem is to determine

the assignment configuration of tasks to workstations. The

wide-spread objective is to maximize the efficiency of the

line either by minimizing the number of workstations

given the cycle time (referred to as the problem of type-I)

or minimizing the cycle time given the number of

workstations (referred to as the problem of type-II). There

are certain constraints to be satisfied during the task

assignment process: capacity constraint, precedence

relationship constraint and task occurrence constraint. The

capacity constraint ensures that the finishing times of all

tasks assigned to a particular workstation do not exceed the

cycle time. The precedence relationship constraint

specifies the technological or organizational priorities

between tasks; i.e. some tasks must have been completed

before the initialization of another task. Finally, the

occurrence constraint corresponds to the assignment of

every task to exactly one workstation to obtain a feasible

line balance [2].

The mixed-model production line was introduced by

Thomopoulos [3] and has been studied extensively since

then. A mixed-model line is a consecutive sequence of

workstations in which more than one product model is

produced simultaneously. On the contrary, a single model

line is able to assemble a single product model at the same

time. Therefore, the main advantage of mixed-model lines

over single-model lines is that there is no need to construct

a new line to produce each product model. Thus,

customized customer demands can be fulfilled by the

companies in a more economical way. Within this context,

the mixed-model lines have been widely utilized in

industry from electronics to automotive and home

appliances.

 Among various studies on assembly line balancing

problems, the ones on mixed-model lines usually consider

the lines with only one side. However, the two-sided lines

[4], across which the product models are assembled

through the workstations located in both left and right sides

of the line, are usually applied to produce large-sized items

(such as trucks, buses or even smaller products) with

model variations. Although having a mixed-model two-

sided line is getting popular in today’s manufacturing

industry, the number of studies on mixed-model two-sided

lines is limited. An ant colony optimization (ACO)

algorithm was developed by Simaria and Vilarinho [5] for

solving the mixed-model two-sided assembly line

balancing problem considering parallel workstations. The

aim was to minimize the number of workstations. A

mathematical model and a simulated annealing algorithm

were proposed by Ozcan and Toklu [6] with the aim of

minimizing the number of mated-stations and the number

of workstations. In both studies (Simaria and Vilarinho [5]

International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 250

Figure 1. A schematic configuration of tasks in mixed-model two-sided lines [7]

and Ozcan and Toklu [6]) some additional constraints were
also adopted, such as synchronous tasks and zoning
constraints. Chutima and Chimklai [8] proposed a particle
swarm optimization algorithm and aimed to maximize the
work-relatedness and workload smoothness. Rabbani et al.
[9] proposed a GA-based heuristic and a mixed-integer
program to solve the mixed-model two-sided assembly line
balancing problem considering the multiple U-shaped
layout with the aim of minimizing the cycle time and the
number of stations. Kucukkoc and Zhang [10-12]
developed various agent-based ant colony algorithms and a
mathematical model for balancing and
balancing/sequencing the mixed-model parallel two-sided
assembly lines.

 As seen from this survey, there is no research which

aims to simultaneously minimize the cycle time and the

number of workstations for mixed-model two-sided lines

(referred to as the problem of type-E). Therefore, to the

best of author’s knowledge, this research contributes to

knowledge by addressing the type-E mixed-model two-

sided assembly line balancing problem for the first time.

An ant colony algorithm is proposed for solving the

problem, due to its NP-hard nature. A real-world problem

was taken from Zhang et al. [7] and solved using the

proposed approach. The result of the case study indicates

that the proposed approach helps improve the efficiency of

the line.

II. PROBLEM DEFINITION

A mixed-model two-sided assembly line is comprised
of serially linked workstations located in both left and right
sides of the line. On the line, two or more product models
are produced in an inter-mixed sequence. There is no need
for set-up between the product model changes as the
models are similar to each other. So, different models of a
product can be assembled on the same line in any sequence
that satisfies the customized product demands. Figure 1
represents a typical configuration of the mixed-model two-
sided lines. The processing times of tasks belonging to two
models (A and B) are represented by bars. The length of a
particular bar corresponds to the processing time of the
task given inside that bar. The gray shaded areas denote the
unavoidable idle times usually caused by the precedence
relationships and capacity constraints. As seen in Figure 1,
there is a total of nine tasks performed in three
workstations located in left and right sides of the line.

Task

Processing Time

(time-unit)
Operation

Side

Immediate

Predecessor(s)
A B

1* 29 29 E -

2 16 16 R 7

3 10 10 R 7

4 4 4 E -

5 18 18 E 4

6 15 15 E -

7 9 9 E -

8 11 11 E 7

9* 7 7 E 6

10 4 4 E -

11* 13 13 E 2,9,10

12 6 6 E 5

13 13 13 E 12

14 8 8 E 13

15* 65 69 E 14

16 6 6 E 5

17 5 5 E 12

18 11 11 L 12,17

19* 7 7 E 12,15

20* 31 31 E 11,19

21* 7 7 E 19

22 22 22 E 12

23* 24 24 E 22, 27

24* 14 14 E 23

25* 15 15 E 22,24,27

26* 17 17 E 24

27 4 4 L 12

28 28 28 E 27

29 7 10 E 28

30 9 9 E 28

31 17 17 E 29

32 16 16 E 30

33 15 15 E 10

34 16 10 R 12

35 17 17 R 12

36 10 20 R 35

37 10 30 R 36

38 11 11 R 37

39 8 8 L 10

40 10 10 E 12

41 11 17 E 12

42* 10 10 E 40,41

43* 8 8 E 40,41

44* 9 9 E 43

45* 5 10 E 44

46* 11 11 E 2,3,11,15,43

47* 4 4 E 42,45,46

48 6 6 L 12

49 18 27 E 47

Table 1. Data for the case study

WS-1

WS-2

WS-3

International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 251

Figure 2. The assignment configuration of tasks in current situation

WS-1 and WS-2 constitutes a ‘mated-station’ and each of
these workstations call the other one as its ‘companion’. In
mixed-model production, some tasks may not be needed

for some models. For example, tasks 1 and 4 are not
necessary for model B while tasks 3 and 8 are not
necessary for producing model A (see WS-1 and WS-3 in
the left side of the line).

The data related to the case study is gathered from Zhang
et al. [7] and presented in Table 1. The processing times,
precedence relationships and operation sides of 49 tasks
are presented in the table. The letters reported in the
‘Operation Side’ column denote the side of the line in
which the corresponding task must be performed; i.e. ‘L’
means left side, ‘R’ means right side and ‘E’ means either
side. The tasks marked with asterisk (*) are in the same
“incompatible task group [7]”, which means they cannot
be performed on the same product, simultaneously. No
detail information on incompatible task groups will be
repeated here due to the page limit, please refer to Zhang et
al. [7] for more information. The demands for models are
assumed to be the same (𝐷𝐴 = 𝐷𝐵). The assignment
configuration of tasks in its current form is presented in
Figure 2. As seen from the figure, eight workstations are
utilized while the companions of WS-3 and WS-4 are not
employed. Also, it is seen that the workstation which
determines the cycle time is WS-7 as it has the largest
processing time of 120 time-units for model B. However,
the idle times in the workstations occupy quite a lot of
time.

III. SOLUTION METHOD

 An ACO approach is proposed for solving the mixed-
model two-sided assembly line balancing problem
considered in this study. ACO algorithms are one of the
most successful examples of swarm intelligent systems and
have been successfully applied to a wide range of problem
types. The behavior of each ant is inspired by the food
searching mechanism of real ants [13] and their
communication form with each other, in particular. Ants
randomly walk on the path, at the beginning of the search
process. After some time, the ant which finds a source of
food walks back to the colony, leaving pheromone on the
ground. This will attract other ants and they will follow the
same path at a certain probability. By time, there will
accumulate more pheromone on the shortest path from the
nest to the food source [5, 14]. Please refer to Dorigo and
Stützle [15, 16] for a comprehensive overview on advances
and various applications of ACO algorithms.

 The outline of the solution method proposed in this
research is presented in Figure 3. As seen in the figure,
after the initialization of the parameters, the theoretical
minimum of cycle time (𝐶𝑚𝑖𝑛) is calculated using (1) and
accepted as the cycle time (𝐶 ← 𝐶𝑚𝑖𝑛) [7].

𝐶𝑚𝑖𝑛 = max
𝑗∈𝐽

{⌈
∑ 𝑡𝑖𝑗

𝑁
𝑖=1

𝐾
⌉

+

}
(1)

where 𝑁 is the total number of tasks, 𝑡𝑖𝑗 is the processing

time of task 𝑖 for model 𝑗 (𝑗 ∈ 𝐽) and 𝐾 is the total number

Left Right Left Right Left Right

International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 252

of workstations. ⌈𝑋⌉+ denotes the least integer equals to or
larger than X.

 A new colony is released and a certain amount of
pheromone (initial_pheromone) is deposited to all edges of
the solution space. Please note that the pheromone is
deposited between the task and the corresponding
workstation in which it is assigned. A balancing solution is
built by each ant in the colony considering 𝐶 (using the
procedure given in Figure 4). The selection probability of
task 𝑖 for the position 𝑘 is calculated using (2) [16]. The
algorithm is enhanced with 10 heuristics commonly used
in the line balancing domain, and by Kucukkoc and Zhang
[12].

𝑝𝑖𝑘 =
[𝜏𝑖𝑘]𝛼[𝜂𝑖]

𝛽

∑ [𝜏𝑖𝑦]
𝛼

[𝜂𝑖]
𝛽

𝑦𝜖𝑍𝑖

(2)

where 𝛼 and 𝛽 are weighting parameters which determine
the influence of pheromone and heuristic information in
the task selection process, respectively. 𝑍𝑖 is the list of
candidate tasks when selecting task 𝑖. 𝜏𝑖𝑘 is the pheromone
amount existing between task 𝑖 and workstation 𝑘, and 𝜂𝑖
is the heuristic information of task 𝑖 that comes from the
heuristic selected randomly [10].

 The line efficiency values of the solutions obtained are
calculated using (3) and pheromones are updated using (4)
[16].

𝐿𝐸% =
∑ ∑ 𝑑𝑗 𝑡𝑖𝑗

𝑁
𝑖=1𝑗𝜀𝐽

𝐾 × 𝐶
× 100

(3)

where 𝑑𝑗 is the proportional demand of model 𝑗 (𝑑𝑗 =

𝐷𝑗/ ∑ 𝐷𝑗𝑗∈𝐽), 𝑡𝑖𝑗 is the processing time of task 𝑖 for model 𝑗

and 𝐾 is the total number of workstations.

𝜏𝑖𝑘 ← (1 − 𝜌)𝜏𝑖𝑘 + ∆𝜏𝑖𝑘
(4)

where ∆𝜏𝑖𝑘 = 𝑄 𝐾⁄ ; 𝜌 and 𝑄 denote the evaporation rate
and a user-determined parameter.

𝐶 is increased by 𝐶𝑖𝑛𝑐 and new colonies are released to
get new solutions and this cycle continues until 𝐶 exceeds
𝐶𝑚𝑎𝑥. The best solution which gives the global best 𝐿𝐸%
value is determined as the solution of the problem and the
algorithm is terminated.

 The algorithm was coded in Java and run on an Intel
Celeron® CPU N2840 2.16 GHz 4GB platform to solve
the problem with the parameter setting of 𝛼 = 𝛽 = 0.1,
𝜌 = 0.1, 𝑄 = 50, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 30,
𝑀𝑎𝑥𝑁𝑏𝐶𝑜𝑙𝑜𝑛𝑖𝑒𝑠 = 100 and 𝐶𝑜𝑙𝑜𝑛𝑦𝑆𝑖𝑧𝑒 = 20.

Figure 5 presents the best solution retrieved when the
algorithm was terminated. The solution presented here
fulfills all constraints explained in Section II as well as the
incompatible task group constraints considered by Zhang
et al. [7]. The length of each bar symbolizes the processing
time of the task given in it. The finishing/starting times of

Initialize the algorithm and all parameters

Calculate the minimum value for cycle time (𝐶𝑚𝑖𝑛)

Initialize the cycle time (𝐶 ← 𝐶𝑚𝑖𝑛)

While 𝐶 < 𝐶𝑚𝑎𝑥

While colony_number < MaxNbColonies

Release a new colony (colony_number++)

Deposit initial_pheromone to all edges

While ant_number < ColonySize

Release a new ant (ant_number++)

Select a heuristic rule at random

Build a balancing solution

Calculate the line efficiency of the solution found

Update pheromone values

End while

Determine the best solution (which has the maximum line

efficiency) in the colony

End while

Determine the global best solution (which has the maximum

line efficiency) among the colonies

𝐶 ← 𝐶 + 𝐶𝑖𝑛𝑐

End while

Print the best solution
Figure 3. The outline of the proposed algorithm

Initialize parameters
While unassigned tasks list is not empty (𝑈𝑇 ≠ ∅) {

Select an operation side at random (left or right)

Determine the available tasks for the current position

If (there is at least one available task) {
Calculate the selection probability of every available task

Select a task (𝑖) based on the selection probabilities

Assign task 𝑖 to the current position and remove from 𝑈𝑇

Increase the station time for each model: 𝑠𝑡(𝑘)𝑗 ←
𝑠𝑡(𝑘)𝑗 + (𝑡𝑗𝑖)

} else if (there is no available task due to interference) {

Increase the station time of the current workstation:

𝑠𝑡(𝑘) ← 𝑠𝑡(𝑘), where 𝑘 is the companion of

workstation 𝑘 [5]
Select an operation side at random

} else if (there is no available task due to insufficient

capacity) {

If (both sides of the current line reached full capacity) {

Increase the station number (𝑘 + +)

} else if {
 Alternate the operation side

} end if
} end if

} end while
Figure 4. The outline of the procedure followed by each ant to build a

balancing solution

the tasks are also given over bars to enable a more

comprehensible reading. The gray shaded areas denote the

unavoidable idle times occurred either towards the end of

the workstations (due to capacity constraint) or between

tasks (due to precedence or incompatibility constraints). A

total of seven workstations is needed to perform all tasks

within the cycle time of 107 time-units/item. This gives a

line efficiency value of almost 90% when calculated using

(3) (𝐶 = 107, 𝐾 = 7). The efficiency of the line balance

International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 253

Figure 5. The assignment configuration of tasks according to the best

solution obtained

before balancing it using the proposed ACO approach was
slightly higher than 70 % (where 𝐶 = 120, 𝐾 = 8). This
corresponds to a significant improvement of over 28% in
the line efficiency in comparison to the line balance before
balancing it. Thus, both the cycle time and the number of
workstations have been reduced from 120 time-units/item
and eight workstations to 107 time-units/item and seven
workstations, respectively. This improvement also resulted
in a smoother workload distribution among the
workstations across the line. As seen from the figure, WS-
3 has the largest workload with 106 time-units for both
model A and model B. On the contrary, WS-6 has the
smallest workload, i.e. 64 time-units for model A and 94
time-units for model B. The difference in the total
workload time between the two models is due to the
differences in the processing times of tasks 36 and 37 for
models A and B.

Figure 6. The change in the number of workstations and the line

efficiency while the cycle time increases

Figure 6 shows the change in the number of workstations
(K) and the line efficiency (𝐿𝐸%) while the cycle time
increases up to 𝐶 = 135. As seen in the figure, the ACO
algorithm found solutions with 10 workstations when 𝐶 =
85 and 𝐶 = 86 time-units/item. However, a solution with
nine workstations (𝐿𝐸% = 85.9) was found when 𝐶 was
increased to 87 time-units/item. Similar breakings have
been observed when 𝐶 = 107 and 𝐶 = 134 time-
units/item and with 𝐿𝐸% = 89.8 and 𝐿𝐸% = 83.6,
respectively. This confirms that the maximum line

6

7

8

9

10

85 90 95 100 105 110 115 120 125 130 135

N
u

m
b

er
 o

f
S

ta
ti

o
n

s
(K

)

Cycle Time (C)

72

74

76

78

80

82

84

86

88

90

85 90 95 100 105 110 115 120 125 130 135

L
in

e
E

ff
ic

ie
n

cy
 (

L
E

%
)

Cycle Time (C)

C=87 C=95 C=107 C=134

Left Right Left Right

International Conference on Computer Science and Engineering Tekirdağ, Turkey, 20-23 October 2016

UBMK 2016 Proceedings 254

efficiency of 89.8% was observed with seven workstations
when 𝐶 = 107 time-units/item.

IV. CONCLUSION

An ACO algorithm, enhanced with commonly used

heuristic rules, was proposed for solving the mixed-model

two-sided assembly line balancing problem multi-

objectively. The aim was to minimize the cycle time of the

line as well as the number of workstations (the problem of

type-E). To the best of author’s knowledge, this is the first

attempt in the literature to minimize those conflicting

objectives for the mixed-model two-sided lines. The data

belonging to an industrial case study was gathered from

Zhang et al. [7] and solved using the proposed algorithm

coded in JAVA. The cycle time of the line was decreased

from 120 time-units/item to 107 time-units/item and the

number of workstations was reduced from eight to seven.

Eventually, a significant improvement of over 28% was

gained in the line efficiency and a smoother workload

distribution was obtained in comparison with the situation

before balancing the line. The ITG constraint originally

introduced by Zhang et al. [7] has also been considered

along with other essential constraints (e.g. capacity and

precedence relationship). In terms of the practical

applications of the study, the line managers can easily

apply the method proposed in this paper to other similar

problems in industry. Also, the ITG concept can be

applied to other problems (e.g. parallel lines and U-shaped

lines) or it can be extended (such that there are more than

one ITG for the same system) for making it adaptable to

more sophisticated implementations in real life. The

development of a mathematical model for the type-E

mixed-model two-sided assembly line balancing problem

has been left to future studies.

REFERENCES

[1] Boysen N, Fliedner M, Scholl A. A classification of assembly line

balancing problems. European Journal of Operational Research.

2007;183(2):674-93.

[2] Battaïa O, Dolgui A. A taxonomy of line balancing problems and

their solution approaches. International Journal of Production

Economics. 2013;142(2):259-77.
[3] Thomopoulos NT. Line Balancing-Sequencing for Mixed-Model

Assembly. Management Science. 1967;14(2):B-59-B-75.

[4] Bartholdi JJ. Balancing 2-Sided Assembly Lines - a Case-Study.
International Journal of Production Research. 1993;31(10):2447-

61.

[5] Simaria AS, Vilarinho PM. 2-ANTBAL: An ant colony
optimisation algorithm for balancing two-sided assembly lines.

Computers & Industrial Engineering. 2009;56(2):489-506.

[6] Ozcan U, Toklu B. Balancing of mixed-model two-sided assembly
lines. Computers & Industrial Engineering. 2009;57(1):217-27.

[7] Zhang DZ, Kucukkoc I, Karaoglan AD. Rebalancing of mixed-

model two-sided assembly lines with incompatible task groups:
An industrial case study. 46th International Conference on

Computers & Industrial Engineering (CIE46), 29-31 October

2016, Tianjin, China2016.
[8] Chutima P, Chimklai P. Multi-objective two-sided mixed-model

assembly line balancing using particle swarm optimisation with

negative knowledge. Computers & Industrial Engineering.
2012;62(1):39-55.

[9] Rabbani M, Moghaddam M, Manavizadeh N. Balancing of mixed-

model two-sided assembly lines with multiple U-shaped layout.
International Journal of Advanced Manufacturing Technology.

2012;59(9-12):1191-210.

[10] Kucukkoc I, Zhang DZ. Mixed-model parallel two-sided assembly
line balancing problem: A flexible agent-based ant colony

optimization approach. Computers & Industrial Engineering.

2016;97:58-72.
[11] Kucukkoc I, Zhang DZ. Simultaneous balancing and sequencing

of mixed-model parallel two-sided assembly lines. International

Journal of Production Research. 2014;52(12):3665-87.
[12] Kucukkoc I, Zhang DZ. Mathematical Model and Agent Based

Solution Approach for the Simultaneous Balancing and

Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines.
International Journal of Production Economics. 2014;158, :314-

33.

[13] Dorigo M, Di Caro G. The Ant Colony Optimization meta-
heuristic. In: Corne D, (Ed.). New Ideas in Optimization. London,

UK: McGraw Hill; 1999. p. 11-32.
[14] Dorigo M, Di Caro G, Gambardella LM. Ant Algorithms for

Discrete Optimization. Artificial Life. 1999;5:137–72.

[15] Dorigo M, Stutzle T. Ant Colony Optimization: Bradford Books,
MIT Press, Cambridge, MA; 2004.

[16] Dorigo M, Stutzle T. Ant Colony Optimization: Overview and

Recent Advances. Handbook of Metaheuristics, Second Edition.

2010;146:227-63.

