Silicon carbide (SiC), a wide-band-gap semiconductor of \(\sim 3 \) eV, is a candidate material for electronic and optical devices and has advantages over other semiconductors especially for high-frequency, high-temperatures and high-power applications.\(^1\) This is because of its high saturation electron velocity (2.0 \(\times 10^7 \) cm/s), thermal conductivity (4.9 W/cm \(^\circ \)C), and high breakdown field (4 MV/cm).\(^2,3\) The large band gap and high saturation electron velocity of SiC provide excellent high-temperature stability and high-frequency performance for various device applications.\(^4\) For that reason, SiC technology has made tremendous improvements in the last decade with a variety of encouraging device and circuit demonstrations.\(^5\)

SiC-based semiconductor electronic devices and circuits are presently being developed for use in high-power, high-temperature, and high radiation conditions in which conventional semiconductors cannot adequately perform. The photoconductive semiconductor switch (PCSS) is an important type of electronic device and excels in applications requiring high voltage and high speed. Some of the applications of the PCSS include high-speed photodetectors, high-voltage pulse generation, and electron-beam pumped lasers, and radio frequency interference immunity. There is strong interest in developing these devices for use in high-power and high-temperature applications. PCSSs have unique advantages over conventional power switches including high breakdown field, high speed, long lifetime, and negligible jitter time. Although Si and GaAs are the most commonly used materials in PCSS,\(^6,7\) compared to GaAs and Si, better performance and wider (more) applications are expected from SiC PCSS due to its higher saturation electron drift velocity and higher thermal conductivity. The advantages of PCSSs over conventional switches make them the perfect choice for many important applications where high switching accuracy and power capability are important. Furthermore, wide-band-gap semiconductor switches are attractive since they have a higher tolerance compared to other switches due to their better material properties. There has been significant interest in using high-resistivity SiC, among the wide-band-gap semiconductors, for PCSS because it is one of the most technologically advanced materials.\(^5-10\) In addition, PCSSs have been fabricated on SiC, both on 6H–SiC (Refs. 9 and 11) and later on 3C–SiC.\(^11\) However, a lack of semi-insulating substrates prevented further development of PCSS technology on SiC due to the high dark currents normally encountered with less resistive substrates.

In this letter, we report measurements on 4H–SiC PCSSs for high-voltage applications. The devices were fabricated on bulk polycrystalline SiC material. These results are complemented by photoconductivity measurements under a large dc bias.

The devices were fabricated with a circular geometry with a switching gap of 1 mm on high-resistivity 4H–SiC. This relatively large device size was chosen to prevent arcing at high voltages, since the dielectric breakdown field strength of air is approximately 30 kV/cm. Since the fabricated devices are planar, the majority of the conduction will be along
the semiconductor surface. For that reason, H$_2$ annealing and wet KOH etching were used to passivate the surface. The surface of the SiC wafer was exposed to H$_2$ gas at a high temperature (1650 °C) in a 10 standard liter per min (s/m) H$_2$ environment. This leads to surface reconstruction, where macroscopic defects, such as the damage caused by mechanical polishing, and microscopic defects on the surface are annealed out. In Fig. 1, an atomic force microscopy (AFM) image of the Si face of 4H–SiC after H$_2$ annealing and molten KOH etching is shown. The image size is $2 \times 2 \, \mu\text{m}^2$ and the vertical scale of the image is 3 nm. The surface roughness (rms value) over the whole area is 0.31 nm.

FIG. 1. AFM image from the Si face of the 4H–SiC after H$_2$ annealing and 15 s of molten (210 °C) KOH etching. The image size is $2 \times 2 \, \mu\text{m}^2$. Vertical scale is 3 nm. The surface roughness (rms value) over the whole area is 0.31 nm.

nealed at 950 °C for 1.5 min by rapid thermal annealing in nitrogen ambient.

The photoconductivity of the SiC switches was measured under a dc bias. The photoconductive effect is based on the fact that the resistivity of a semiconductor can be altered by illuminating the material with an optical source whose photon energy is larger than the semiconductor band-gap energy, thus generating electron–hole pairs which pave the way for increased conduction. The photoconductivity measurements were performed using a frequency doubled dye laser at 307 nm (4.04 eV) with a pulse width of \sim10 ns. A charged 0.25 μF capacitor, in parallel with the device, was used to provide a source of current during the photoconductive pulse. The voltage drop across a 10 Ω current sense resistor was used to measure the photocurrent through the device, and a sensitive ammeter was put in series with the device for dark current measurements.

Figure 2 summarizes the calculated dark resistance determined from the current flowing through the switch before switching, and the switch “on” resistance versus applied bias voltage. The resistance of the photoconductive devices can be changed over many orders of magnitude from a large value to low value in a short period of time which is comparable to the laser pulse of \sim8 ns for fast switching. The average dark resistance of the 4H–SiC sample was 5.18 \times1011 Ω. As can be seen from Fig. 2, the average on-state resistance is about 20 Ω and the ratio of off-state to on-state resistance is about 2.5 \times1011. The on-state switch resistance is similar to values observed by Sheng et al.12

The dependence of the dark leakage current and peak photocurrent on applied voltage for one of the devices is shown in Fig. 3. The extremely low dark leakage currents can be attributed to a low defect density in the device, but further improvements in material quality are needed. The average ratio of the peak photocurrent to dark current, which is equal to the $R_{\text{off}}/R_{\text{on}}$ resistance ratio, is 2.5 \times1011 and this is a state-of-the-art value of on/off ratio. As can be seen from Fig. 3, the peak current does not yet show saturation with applied voltage, implying that higher bias voltages can be applied to these devices. The maximum photocurrent measured at 1000 V was 49.4 A. Figure 4 summarizes the dependence of peak photocurrent on incident laser power at

FIG. 2. SiC PCSS dark resistance vs switch voltage together with on-state switch resistance.
laser was used to measure the photoconductivity response of the PCSS. High breakdown voltage values corresponding to a high electric field have been achieved only for devices having a smaller area15 and shorter gap distance18 than those studied here. The electric field applied to the devices was calculated by dividing the applied voltage with the distance between contacts and was about 10 kV/cm. When the switch is illuminated, its photoconductivity will increase and current will start to flow through the current sense resistor, which gives us the observed photoconductivity response. The current should increase with increasing applied voltage until the saturation voltage is reached. The 4H–SiC PCSS tested switched the current many thousands of times and no degradation was shown on these devices at high voltage. No breakdown was observed on these devices meaning they can likely tolerate higher voltages and switch higher currents. In order to examine the high electric-field effects, switches fabricated with a small gap size should be used to reduce the effect of micropipes.16

In conclusion, planar PCSS have been fabricated on high-resistivity 4H–SiC in large sized structures. Photoconductivity measurements were done on these samples at bias voltages up to 1005 V. The average on-state resistance was 20 Ω and the average off-state resistance was 5×10^{12} Ω, for an on/off ratio of 2.5×10^{11}. The AFM image showed good surface morphology, atomic layer flatness, and large step width. The PCSS were measured with dc bias and showed repeatable behavior over many thousands of pulses.

This work was performed under USAF SBIR Contract No. F33615-02-M-2250 and benefited from programs at VCU from AFOSR, ONR, and NSF.

3G. Neudeck, Institute of Physics Conference Series 141, San Diego, CA, 1994, pp. 1–6.

15V. E. Chelnokov, A. L. Syrkin, and V. A. Dmitriev, Diamond Relat. Mater. 6, 1480 (1997).